来源:《安徽农业科学》2014年第27期  作者:李琰;邢艳秋;王立海;
选择字号

基于改进的粒子群和蚁群算法的高光谱森林聚类研究

收藏本文  分享

高光谱图像分类可分为监督分类与非监督分类,聚类分析进行非监督分类是一种现今比较受研究者广泛关注的技术。粒子群算法具有自适应、自组织性、可同时进行局部和全局搜索等特点;蚁群算法通过智能个体间不断进行信息交流和传递,具有较强的发现最优解的能力。提出一种基于改进的粒子群和蚁群算法的高光谱图像聚类方法,设计其模型并将其应用在森林类型分类问题上,提高分类精度,减少人工干预。以吉林省汪清林业局为研究区,通过修改粒子群的惯性系数,得出最优解集,然后利用蚁群寻优的过程对阔叶林、针叶林、混交林、水体进行聚类分析,区分精度达到85%证明,该方法能较好地识别森林类型。(本文共计4页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>