来源:《重庆邮电大学学报(自然科学版)》2019年第06期  作者:裴乐;刘群;舒航;
选择字号

结合遗忘特性的多任务多核在线学习算法

收藏本文  分享

对于数据流的处理,多任务多核学习已逐渐成为在线学习算法研究的热点,它在一定程度上可提高数据流预测的准确性。多核方法尽可能使用最少的核函数得到最好的实验效果,当数据量增大、训练模型稳定时,通过阈值限定的方法对核函数进行遗忘,从而减少基本核函数的使用个数,使得计算更加简单;对于算法的优化,通过引入一个遗忘变量,从对偶的角度来进一步优化权重更新过程,这里的权重指多个任务的共有特征权重和每个任务间的特有权重,以提高算法的收敛速度。实验部分对核函数的选取进行了较为详细的分析,通过对UCI数据集和实际的机场客流量数据集进行分析,证明该本算法的合理性和高效性。(本文共计12页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>