来源:《电测与仪表》2019年第24期  作者:王克杰;张瑞;
选择字号

基于改进BP神经网络的短期电力负荷预测方法研究

收藏本文  分享

针对短期负荷预测精度低、准确性差等问题,将猫群算法CSO和BP神经网络相结合用于短期负荷预测,模型的输入因子是负荷数据和气象信息等,利用猫群算法对BP神经网络的权值和阈值进行优化,得到BP神经网络预测模型的最优解,建立了短期预测模型。通过实例验证了预测模型的有效性和有效性,结果表明,改进模型能够有效降低BP神经网络模型的预测误差,提高预测精度,为我国电力系统短期负荷预测的发展提供了参考和借鉴。(本文共计7页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>