来源:《环境科学与技术》2012年第01期  作者:杨道军;王冉;沈刚;
选择字号

SVM与ANN在湖泊富营养化评价中的对比研究

收藏本文  分享

支持向量机是由Vapnik等提出的建立在统计学习理论基础上的一种新的机器学习方法,由于其使用结构风险最小化原则代替经验风险最小化原则,又由于其应用了核函数思想,它可以较好地解决非线性问题;人工神经网络(ANN)已经较成功解决模式识别和任意非线性函数回归问题,但是存在训练样本不足,并可能出现过拟合现象。SVM的结构风险最小化算法引起了科学界的关注,对传统基于经验风险最小化的神经网络算法提出了挑战,文章介绍了SVM和ANN的基本原理,并对二者在巢湖富营养化水平评价上做对比研究,结果表明,ANN比较容易陷入局部最优,支持向量机评价结果更加符合实际。(本文共计5页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>