来源:《森林与环境学报》2019年第06期  作者:雷鸣;田卫新;任东;董婷;
选择字号

基于对象分类的遥感影像森林变化检测方法

收藏本文  分享

针对湖北省宜昌市点军区森林变化检测应用需求,采用两期高分二号(GF-2)数据进行对比分析。定义了基于邻域差分绝对值与标准差比的多尺度分割评价函数,用来确定对遥感图像分割的分割尺度、形状因子以及紧凑度。通过试验,利用神经网络分类方法确定了基于对象分类的最优特征组合,并采用基于对象的最近邻(kNN)分类方法对遥感图像进行分类,最后对两期遥感影像分类结果中的森林类别进行变化检测。结果显示,在分类过程中,基于对象的分类总体精度为0.986 6,Kappa系数为0.975 2,高于神经网络和最大似然分类方法。在以森林地为主的丘陵地带变化检测应用中具有较好的适用性。(本文共计6页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>