来源:《计算机科学》2018年第S1期  作者:邹华福;谢承旺;周杨萍;王立平;
选择字号

应用反向学习和差分进化的群搜索优化算法

收藏本文  分享

针对标准群搜索优化算法在解决一些复杂优化问题时容易陷入局部最优且收敛速度较慢的问题,提出一种应用反向学习和差分进化的群搜索优化算法(Group Search Optimization with Opposition-based Learning and Differential Evolution,OBDGSO)。该算法利用一般动态反向学习机制产生反向种群,扩大算法的全局勘探范围;对种群中较优解个体实施差分进化的变异操作,实现在较优解附近的局部开采,以改善算法的求解精度和收敛速度。这两种策略在GSO算法中相互协同,以更好地平衡算法的全局搜索能力和局部开采能力。将OBDGSO算法和另外4种群智能算法在12个基准测试函数上进行实验,结果表明OBDGSO算法在求解精度和收敛速度上具有较显著的性能优势。(本文共计6页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>