来源:《计算机工程》2019年第04期  作者:苗续芝;陈伟;毕方明;房卫东;张武雄;
选择字号

基于改进FOA-SVM的矿井火灾图像识别

收藏本文  分享

为解决矿井下传统火灾识别方法准确率较低的问题,提出一种基于改进果蝇优化算法(FOA)-支持向量机(SVM)的火灾图像识别算法。利用YCrCb颜色空间对捕获的图像进行分割,根据早期的火灾图像特征从图像序列中提取多个火灾特征值。用基于分群体融合的改进FOA算法搜索SVM最优核参数和惩罚因子,将提取的火灾图像特征值作为SVM的输入对样本数据进行分类。实验结果表明,采用该方法对矿井火灾进行识别时准确率达97.2%,其分类效果显著优于FOA方法、粒子群优化算法等。(本文共计8页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>