来源:《控制与决策》2019年第04期  作者:胡峰;张苗;于洪;
选择字号

基于三支决策的主动学习方法

收藏本文  分享

主动学习是机器学习领域研究的热点之一,旨在解决样本无标签问题.将三支决策的思想应用到主动学习中,通过引入决策函数,并基于无标签样本的不确定性,将无标签样本划分为3个不同的域:正域、负域、边界域.针对不同区域的样本进行相应处理,提出一种基于三支决策理论的主动学习方法(TWD_Active方法).通过主动学习方法选出最有用的样本交给专家进行标记,扩大训练集,创建更有效的模型.与传统的被动学习相比,该方法可以选择信息量高、有代表性的样本进行打标,可避免样本的冗余添加.通过反复迭代的训练学习达到预设的迭代次数或期望的性能指标.实验结果表明,所提出的算法在F-value、AUC等评价指标上均可取得良好的效果,验证了该算法的有效性.(本文共计9页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>