您的位置:杂志 > 《煤炭学报》 > 2019年 > 第01期
来源:《煤炭学报》2019年第01期  作者:肖武;陈佳乐;赵艳玲;胡振琪;吕雪娇;张硕;
选择字号

利用无人机遥感反演高潜水位矿区沉陷地玉米叶绿素含量

收藏本文  分享

有效识别采煤沉陷耕地损毁程度、面积及空间分布信息是矿区沉陷土地复垦、赔偿的客观需求。农作物受损后叶片叶绿素是很好的指示性指标,针对高潜水位矿区开采沉陷导致地面积水所引起的农作物渍害影响,基于无人机多光谱影像,在传统植被指数的基础上引入红边波段进行扩展,改进了现有的植被指数,结合田间同步实测叶绿素数据,采用经验模型法分别构建了单变量和多变量叶绿素反演模型,通过决定系数(R2)、均方根误差(RMSE)和估测精度(EA) 3个指标筛选出最佳模型。最终构建了多元线性回归MVI(red-edge),GNDVI,NDVI的叶片叶绿素定量反演模型,并采用野外对照区域样本对反演结果进行精度验证。结果显示:相对传统植被指数,引入红边后植被指数与叶片叶绿素的相关性得到显著增强,采用上述方法构建的多元线性回归模型的决定系数普遍提高0. 10~0. 20,达到了0. 73,均方根误差降低了0. 11~1. 98,为0. 938 SPAD,估测精度EA最终可达到83. 4%,说明红边波段对采煤沉陷区作物的叶绿素响应敏感,引入红边波段构建叶绿素反演模型,可以应用于采煤沉陷影响下的玉米叶片叶绿素无人机遥感反演。结果(本文共计12页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>