来源:《水电能源科学》2018年第01期  作者:郭泽宇;陈玲俐;
选择字号

城市用水量组合预测模型及其应用

收藏本文  分享

针对城市用水量时间序列包含逐步增长趋势、季节性趋势及不确定性的非线性波动特点,单一预测模型往往很难充分反映原始数据中全部的有效信息,结合季节性时间序列模型(SARIMA)和BP神经网络二者优点,构建了一种新型的组合预测模型,对上海市用水量进行不同时间尺度的预测。结果表明,在不同时间尺度上组合预测模型均比单一预测模型精度高、预测质量稳定。(本文共计4页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>