来源:《生物医学工程学杂志》2006年第04期  作者:汪小毅;林江莉;李德玉;汪天富;郑昌琼;程印蓉;
选择字号

基于B超图像分析的脂肪肝辅助诊断方法研究

收藏本文  分享

本研究为B超诊断脂肪肝建立计算机辅助诊断手段。通过分析正常肝和脂肪肝B超图像的图像特征,包括图像的近远场灰度比特征,以及灰度共生矩阵的角二阶矩、熵和反差分矩统计特征,组成特征矢量,再分别用κ-平均聚类算法、自组织特征映射人工神经网络和反向传播人工神经网络对特征矢量进行分类处理。κ-平均聚类算法对正常肝的识别率为100%,对脂肪肝的识别正确率为63.6%;自组织特征映射人工神经网络对正常肝的识别正确率达100%,对脂肪肝的识别正确率达93.94%;反向传播人工神经网络对正常肝和脂肪肝的识别率均为100%。本文建立的方法能较肉眼更精确地反映正常肝和脂肪肝B超图像的特征,如果再结合医生的临床经验能大大提高脂肪肝的诊断准确性。(本文共计4页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>