选择字号

具有非卷积型核的多线性Littlewood-Paley算子在Campanato空间上的新估计

收藏本文  分享

考虑具有非卷积型核的多线性Littlewood-Paley算子在Campanato空间上的有界性,其中包括多线性g-函数,多线性Lusin面积积分S和多线性g_λ*-函数.证明了如果f=(f_1,…,f_n),f_i∈ε~(α_i,p_i)(R~n),i=1,…,m,那么g(f),S(f),g_λ*(f)几乎处处等于无穷或几乎处处有限,且在后一种情形下,算子[g(f)]~2,[S(f)]~2,[g_λ*(f)]~2从ε~(α_1,p_1)(R~n)×…×ε~(α_m,p_m)(R~n)到ε_*~(2_(α,p)/2)(R~n)是有界的.(本文共计9页)......[继续阅读本文]

下载阅读本文    订阅本刊

相关文章推荐

看看这些杂志对你有没有帮助...

更多杂志>>