来源:《信息与电脑(理论版)》2019年第03期  作者:陈鸥宇;刘怡俊;叶武剑;牟志伟;李琪;
选择字号

基于深度学习和MFCC特征的脑卒中预测方法

收藏本文  分享

脑卒中(cerebral stroke)又称中风、脑血管意外(cerebralvascular accident,CVA),是一种急性脑血管疾病,是我国成年人群致死、致残的首位病因,具有发病率高、致残率高、死亡率高和复发率高的特点。目前,针对脑卒中的治疗手段有限,而且疗效不太理想,预防是现阶段最好的治疗措施。为了有效预防脑卒中,笔者提出了一种基于深度学习和梅尔频率倒谱系数(Mel Frequency Cestrum Coefficient,MFCC)特征的脑卒中预测。首先,通过录音设备录取脑卒中患者和正常人的一小段特定语音;其次,对特定的语音做信号预处理,经预处理后对语音进行相应的梅尔变换,通过离散余弦变换获得MFCC语音特征;最后,将MFCC特征放入卷积神经网络进行模型训练,获取脑卒中的预测评价。实验结果表明,通过将MFCC特征输入到卷积神经网络进行模型训练,在预测准确性和鲁棒性方面具有较好表现。(本文共计3页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>