来源:《中国电机工程学报》2013年第10期  作者:唐飞;王波;查晓明;马志昊;邵雅宁;
选择字号

基于双阶段并行隐马尔科夫模型的电力系统暂态稳定评估

收藏本文  分享

基于人工智能机器学习的暂态稳定评估越来越成为研究热点,提出一种基于双阶段并行隐马尔科夫模型(two-stage parallel hidden Markov model,TS-PHMM)的电力系统暂态稳定评估精细化模式识别方法。第1阶段采用相对灵敏度对原始电气特征量进行筛选,找出对电网动态变化敏感度高的特征子集;第2阶段采用主成分分析对特征子集进行排序,得到能够反映电网动态响应特性且线性无关的最优特征子集;最后,通过并行隐马尔科夫模型训练对暂态稳定进行模式识别。在CEPRI 8机36节点以及实际区域电网环境上的仿真分析,验证了该方法的有效性和精确性。在辨识准确率相当的情况下,该方法比常用人工智能类方法(如ANN,SVM等)所需训练样本更少、收敛更快。(本文共计9页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>