来源:《中国农业科学》2019年第06期  作者:姬旭升;李旭;万泽福;姚霞;朱艳;程涛;
选择字号

基于高空间分辨率卫星影像的新疆阿拉尔市棉花与枣树分类

收藏本文  分享

【目的】枣树和棉花是新疆地区的两大优势作物。利用高空间分辨率遥感影像对作物进行识别,更加快速、准确地获取枣树和棉花的种植面积及其分布区域,以利于相关部门政策的制定及农作物的精确管理。【方法】本文以新疆阿拉尔市主要农作物为研究对象,运用基于像素与面向对象的遥感影像分类方法,通过比较光谱角制图(SAM)、支持向量机(SVM)、CART决策树(DTs)、随机森林(RF)这4种机器学习算法在高空间分辨率卫星影像分类中的作物识别精度,探究影像获取时期(2016-05-10、2016-09-07、2016-10-08)及面向对象的信息提取技术对作物分类精度的影响。【结果】5月份影像(即棉花覆膜期影像)作物分类精度最高,10月份影像次之,9月份影像最差;与基于像素的作物分类方法相比,面向对象的作物分类方法可以使各时期的作物分类总体精度得到一定提高(除SAM之外),各时期分类精度分别提高了4.83%、7.77%、7.22%,最高分类精度分别为93.52%(2016-05-10)、85.36%(2016-09-07)、88.88%(2016-10-08),均实现了较好的作物分类效果。【结论】5月份(棉花(本文共计12页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>