基于降维的堆积降噪自动编码机的表情识别方法

赵军;赵艳;杨勇;朴仁圭;黄勇

堆积降噪自动编码机是一种典型的深度学习模型,它能够刻画数据丰富的内在信息,具有较强的特征学习能力。基于主成分分析(principal component analysis,PCA)技术和堆积降噪自动编码机(stacked denoising autoencoders,SDAE)模型,提出一种新的表情识别算法PCA+SDAE。该算法对人脸图片进行裁剪及归一化等预处理,采用主成分分析技术对人脸特征进行线性降维,再利用堆积降噪自动编码机逐层进行特征学习并同时实现对人脸表情数据的非线性降维,可以得到更好的、维度更低的表情特征,并据此进行表情分类。对PCA+SDAE算法的仿真测试实验结果表明,其综合性能比其他的基于深度学习模型的表情识别方法更好,同时与传统的非深度学习表情识别方法相比,它具有更高的表情识别正确率。 (共5页)
PDF全文下载

安装知网阅读App
手机 · Pad同步看

开通会员,文献不限量下载,尊享更多超值权益!
立即开通 >