您的位置:杂志 > 《电讯技术》 > 2019年 > 第11期
来源:《电讯技术》2019年第11期  作者:刘夏;莫树培;何惠玲;杨军;
选择字号

基于优化RBF神经网络的无线室内定位

收藏本文  分享

针对径向基函数(Radial Basis Function,RBF)神经网络算法在无线网络室内定位中拓扑结构和网络参数难以确定,其定位效果不理想的问题,提出了一种用核主成分分析的模糊C均值聚类算法(Fuzzy C-Means clustering algorithm based on Kernel Principal Component Analysis,KPCA-FCM)和模拟退火自适应遗传算法(Simulated Annealing adaptive Genetic Algorithm,SAGA)优化RBF神经网络的无线室内定位算法。首先利用KPCA对原始训练数据样本进行数据预处理,再通过KPCAFCM算法计算出最优聚类数目和聚类中心点;其次将聚类数目和聚类中心点作为隐含层神经元个数和中心值,创建RBF神经网络,并将其网络参数映射到SAGA算法中;再次由SAGA算法进行网络参数寻优,把最优的解映射回RBF神经网络;最后利用样本数据对RBF神经网络进行训练和测试,完成建立RBF神经网络算法模型。实验表明,在相同的环境中,所提算法比传统RBF神经网络定位精度提高了48. 41%。(本文共计7页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>