您的位置:杂志 > 《电子科技》 > 2018年 > 第06期
来源:《电子科技》2018年第06期  作者:郎俊;白国振;周媛;
选择字号

基于改进的LVQ神经网络图像边缘提取研究

收藏本文  分享

针对传统的学习向量量化神经网络(GLVQ)具有初始值敏感、数据浪费以及权值训练不稳定等缺点,提出了一种基于广义学习向量量化神经网络的改进算法(MGLVQ)。MGLVQ神经网络是利用人工鱼群算法对权值离线粗调之后,再使用引入损失函数的梯度寻优算法对其进行在线细调。将该改进算法用于对图像每个像素的分类,实现图像的边缘提取。仿真结果表明,在Lena图像中GLVQ神经网络边缘点为整个像素的45.08%,而MGLVQ提取边缘点的比例为28.58%,即在整个像素分类中GLVQ比MGLVQ错误分类率高16.51%。相比于GLVQ神经网络,MGLVQ拥有更强的去除噪声的能力和更好的边缘检测效果。(本文共计5页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>