来源:《计算机工程与应用》2020年第18期  作者:胡章芳;徐轩;付亚芹;夏志广;马苏东;
选择字号

基于ResNet-BLSTM的端到端语音识别

收藏本文  分享

基于深度学习的端到端语音识别模型中,由于模型的输入采用固定长度的语音帧,造成时域信息和部分高频信息损失进而导致识别率不高、鲁棒性差等问题。针对上述问题,提出了一种基于残差网络与双向长短时记忆网络相结合的模型,该模型采用语谱图作为输入,同时在残差网络中设计并行卷积层,提取不同尺度的特征,然后进行特征融合,最后采用连接时序分类方法进行分类,实现一个端到端的语音识别模型。实验结果表明,该模型在Aishell-1语音集上字错误率相较于传统端到端模型的WER下降2.52%,且鲁棒性较好。(本文共计7页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>