来源:《计算机工程与应用》2020年第18期  作者:付佐毅;周世杰;李顶根;
选择字号

轻量级目标识别深度神经网络及其应用

收藏本文  分享

针对当前一些主流的深度神经网络模型旨在追求准确率的提升,而忽略了模型的实时性及模型大小问题,提出了一种轻量级目标识别深度神经网络。基于深度分离卷积、分组卷积等轻量化的高效卷积方式,设计了用于图像特征提取的不变分辨率卷积模块和下采样模块,并依此构建了深度主干网络,并对网络进行了减枝。在创建的数据集上对视觉感知的目标识别模型进行了实验验证,获得了72.7%的mAP,在NVIDIA 1080Ti GPU上推理速度达到66.7帧/s。(本文共计6页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>