来源:《计算机工程与应用》2020年第18期  作者:马书浩;安居白;于博;
选择字号

改进DeepLabv2的实时图像语义分割算法

收藏本文  分享

图像语义分割是计算机视觉感知系统的重要组成之一,针对现有的语义分割算法存在分割速度慢的问题提出基于DeepLabv2改进的实时图像语义分割算法。与DeepLabv2相比,改进后的算法使用轻量卷积神经网络Xception作为编码器,增加特征金字塔网络(Feature Pyramid Net,FPN)解码特征的过程,减少空洞金字塔池化网络(Atrous convolution Spatial Pyramid Pooling,ASPP)参数的数量,进而大幅度压缩了算法模型,提升了算法分割速度。此外,还对Focal Loss损失函数在多分类任务中难以选择超参数的问题做出改进,并用于提升算法分割精度。在Cityscapes和Pascal VOC2012数据集上的实验结果表明改进后的算法可达到实时分割速度且具有分割精度高的优点,同时还表明提出的超参数选择方法可进一步提升算法分割精度。(本文共计8页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>