来源:《计算机工程与应用》2020年第22期  作者:吴进;张伟华;席萌;代巍;
选择字号

高性能人脸识别加速器优化设计及FPGA实现

收藏本文  分享

计算机视觉的快速发展对嵌入式产品的系统性能要求越来越高,传统的现场可编程门阵列(Field Programmable Gate Array,FPGA)平台存在计算吞吐未能很好匹配内存带宽,通用处理器对卷积神经网络(Convolutional Neural Network,CNN)的实现效率不高,未能满足性能要求等问题。针对以上设计瓶颈,使用经典的LeNet-5神经网络模型,在Xilinx ZC706嵌入式开发平台上设计了一个高性能的人脸识别神经网络加速器,在高层次综合(High Level Synthesis,HLS)工具的基础上通过存储优化、定点量化、运算优化等方法对神经网络模型进行优化改进,实现了7层的CNN加速器。实验结果表明,CNN加速器的工作频率为200 MHz,相较于CPU,加速器实现了126倍加速,相较于GPU速度提升10倍以上,并且功耗仅为2.62 W。(本文共计7页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>