来源:《控制与决策》2020年第06期  作者:李会军;王瀚洋;李杨;叶宾;
选择字号

一种基于视觉特征区域建议的目标检测方法

收藏本文  分享

虽然基于深度学习的目标检测器具有较高的检测精度,但是大多数检测器的检测速度不能满足实时性要求.此外,目前主流的实时检测算法如SSD (single shot multibox detector)和YOLO (you only look once),对小目标的检测精度不高.鉴于此,提出一种基于视觉特征区域建议的目标检测算法,能够综合平衡检测精度和检测速度.算法分为区域建议和网络分类,区域建议根据目标的特征信息提取候选区域ROI (region of interest);网络分类使用CNN (convolutional neural network)对区域建议中提取的ROI进行处理,计算每个ROI类别的置信度,置信度大于设定阈值的ROI即为目标检测结果.实验结果表明,所提出算法的检测精度明显高于Faster R-CNN、SSD和YOLO,并且具有接近SSD和YOLO的检测速度.(本文共计6页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>