来源:《数理化学习(初中版)》2006年第10期  作者:周勤;
选择字号

因式分解中的变换技巧

收藏本文  分享

因式分解的方法较多,同学们除了牢固掌握课本上介绍的提公因式法,运用公式法,分组分解法和十字相乘法四种基本方法外,还可以学习如下几种变换技巧.一、拆项变换例1分解因式:3x3+7x2-4.分析:先将7x2拆成两个同类项3x2和4x2,然后再用分组分解法分解.解:原式=(3x3+3x2)+(4x2-4)=3x2(x+1)+4(x2-1)=3x2(x+1)+4(x+1)(x-1)=(x+1)(3x2+4x-4)=(x+1)(x+2)(3x-2)二、添项变换例2分解因式:x4+y4+(x+y)4.分析:此式是关于x、y的对称式,故可通过添项把原式化为仅含x+y和xy的式子.解:原式=x4+2x2y2+y4-2x2y2+(x+y)4=(x2+y2)2-2x2y2+(x+y)4=[(x+y)2-2xy]2-2x2y2+(x+y)4=2[(x+y)4-2xy(x+y)2+x2y2]=2[(x+y)2-xy]2=2(x2+xy+y2)2三、换元变换例3分解因式:(x+3)(x-5)(x+6)(x-10)-20x2.分析:此题形式比较复杂,应用换元可将四次式转化为二次式,分解就容易多了.解:原式=[(x(本文共计2页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>