来源:《仪器仪表学报》2015年第04期  作者:李怀俊;谢小鹏;
选择字号

基于核特征模糊聚类及模糊关联熵的齿轮故障模式识别

收藏本文  分享

针对常用数据模糊聚类算法存在缺乏先验知识、对初始值敏感、随机性明显以及高维数据处理效果较差等缺陷,提出了基于核特征模糊聚类及模糊关联熵的故障识别方法,并建立了相关模型。首先提出了核主元熵概念,并采取KPCA降维以减少运算量,基于核密度估计和第一核主元熵最大原理寻求最佳分类数和初始聚类中心,以提高模糊聚类效果;然后引入模糊关联熵系数实现学习模糊集和待识别模糊集相似程度的有效度量,建立了基于数据集中微观算子而形成的全局性故障相似性判别规则。在齿轮故障实验台架上的测试结果显示该方法可显著提高故障数据的聚类效果,具有快速识别故障模糊模式的显著作用。(本文共计8页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>