来源:《中学生数学》2020年第05期  作者:钟清;
选择字号

利用阿波罗尼斯圆解决“AP+nBP”型最值问题

收藏本文  分享

我们知道,平面内到两个定点的距离之比为定值λ(λ>0.且λ≠1)的点的轨迹是圆,这个圆称为阿波罗尼斯圆,简称阿氏圆.已知两个定点A,A′,可以先在直线AA′上找到两点M、N,使得MA/MA′=NA/NA′=λ,然后作以MN为直径的圆,即得对应的阿氏圆,如图1,当λ>1时,点A在圆外,点A′在圆内;当0<λ<1时,点A在圆内,点A′在圆内.(本文共计2页)......[继续阅读本文]

下载阅读本文订阅本刊

图书推荐

    相关文章推荐

    看看这些杂志对你有没有帮助...

    更多杂志>>