仪器仪表学报

2010年12期

本刊往期查看全部 >

基于小波包熵和支持向量机的运动想象任务分类研究

王艳景;乔晓艳;李鹏;李刚

对运动想象脑电特征进行准确提取和分类是脑-机接口技术研究的重要问题。针对脑电信号非平稳性和非线性特点,提出了一种将小波包熵(WPE)和支持向量机(SVM)相结合的脑电信号识别方法,利用小波包系数能量分布分析脑电时频特性,结合信息熵分析其不确定性和复杂性,并从单次实验中提取运动想象脑电特征;通过支持向量机对特征信号进行分类,采用了一种核函数参数v和误差惩罚因子c的最佳寻优方法,并用互信息(MI)、信噪比(SNR)、最小错分率(MR)等准则对分类器进行评判。测试结果为:想象左右手运动脑电信号识别精度达到90%,M I为0.65 bit,SNR为1.44。结果表明WPE-SVM识别方法能够准确提取脑电本质特征,具有较强的分类性能和抗干扰能力,为大脑运动意识任务分类提供了有效方法,它可以应用于脑-机接口系统中。 (共7页)
PDF全文下载

安装知网阅读App
手机 · Pad同步看

开通会员,文献不限量下载,尊享更多超值权益!
立即开通 >