中学数学

1988年06期

本刊往期查看全部 >

正多边形与复数方程

徐博良

我们知道,方程x=P(P∈C)的n个复数根,在复平面内对应一正n边形的n个顶点,在此我们将这一理论作推广。定理复数x_1,X_2,x_3,…,x_n对应正n边形的n个顶点的充要条件是x_i(i=1,2,…n)是方程(x-z_0)~n=p(p∈C)的n个不同的复数根,其中z_0是正n边形的中心所对应的复数,p为复常数。证明必要性,设z_0为正n边形中心所对应的复数,则x_1满足x_1-z_0=(x_1-z_0)[cos((2(i-1)/n)π)+isin(2(i-1)/n)π]其中i=1,2,…,n。∴(x_1-z_0)~n=(x_1-z_0)~n=P。即x_1,x_2,…,x_n为方程(x-z_n)~n=p的n个不同复数根。 (共1页)
PDF全文下载

安装知网阅读App
手机 · Pad同步看

开通季卡/年卡,优惠更多
立即开通